Slub Yarn Quality Optimization by using Desirability Function and Neural Networks
نویسندگان
چکیده
منابع مشابه
rodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
On Multiple Response Optimization: Desirability Functions and Artificial Neural Networks
There are several different approaches used for the optimization of multiple response surface problems. Recently desirability functions and neural network approaches are used in many related studies. In this study multiple response optimization is investigated using desirability functions in response surface methodology and artificial neural networks. The results of these approaches are investi...
متن کاملLong-Term Peak Demand Forecasting by Using Radial Basis Function Neural Networks
Prediction of peak loads in Iran up to year 2011 is discussed using the Radial Basis Function Networks (RBFNs). In this study, total system load forecast reflecting the current and future trends is carried out for global grid of Iran. Predictions were done for target years 2007 to 2011 respectively. Unlike short-term load forecasting, long-term load forecasting is mainly affected by economy...
متن کاملIsogeometric Topology Optimization by Using Optimality Criteria and Implicit Function
A new method for structural topology optimization is introduced which employs the Isogeometric Analysis (IA) method. In this approach, an implicit function is constructed over the whole domain by Non-Uniform Rational B-Spline (NURBS) basis functions which are also used for creating the geometry and the surface of solution of the elasticity problem. Inspiration of the level set method zero level...
متن کاملHardness Optimization for Al6061-MWCNT Nanocomposite Prepared by Mechanical Alloying Using Artificial Neural Networks and Genetic Algorithm
Among artificial intelligence approaches, artificial neural networks (ANNs) and genetic algorithm (GA) are widely applied for modification of materials property in engineering science in large scale modeling. In this work artificial neural network (ANN) and genetic algorithm (GA) were applied to find the optimal conditions for achieving the maximum hardness of Al6061 reinforced by multiwall car...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Sciences
سال: 2011
ISSN: 1812-5654
DOI: 10.3923/jas.2011.3204.3208